March 2021

11.2 Supplemental Antioxidant Nutrients: Parenteral Selenium

There are no new randomized controlled trials since the 2017 updates and hence there are no changes to the following summary of evidence.

Question: Does parenteral selenium supplementation (alone or in combination with other antioxidants) result in improved outcomes in the critically ill patient?

Summary of evidence: Of the 22 included studies there were 6 level 1 studies and 16 level 2 studies reviewed. Twelve compared selenium supplementation to none (Kuklinski 1991, Zimmerman 1997, Berger 2001, Lindner 2004, Angstwurm 2007, Forceville 2007, El-Attar 2009, Manzanares 2011, Woth 2014, Chelkelba 2015, Bloos 2016 and Freitas 2017), five that compared higher amounts of selenium to low dose selenium (Angstwurm 1999, Mishra 2007, González 2009, Valenta 2009 & Andrews 2011) and five (Berger 1998, Porter, Berger 2007, Berger 2008, Heyland 2013) that studied selenium supplementation in addition to other antioxidants (copper, zinc, vit E, C, N-acetylcysteine). One study was published in 2 parts (Berger et al Intensive Care Medicine 2001;27:91-100 and Berger et al Nutrition Research (21):41-54). This study had two intervention arms (selenium alone and selenium combined with zinc and α tocopherol compared to placebo) and the data from the two groups have been combined in the meta-analysis. One study (Woth 2014) did not describe the control group.

Mortality: When the attributable data from 21 studies were aggregated, selenium supplementation had no effect on mortality (RR 0.98, 95 % CI 0.90, 1.08, p = 0.69, heterogeneity $I^2=0\%$) (figure 1). When a meta-analysis was done without the Kuklinski study (poor methodological score), there remained no effect on mortality (RR 0.98, 95% % CI 0.90, 1.08, p = 0.74, heterogeneity $I^2=0\%$) (figure 2).

Subgroup analyses: Several subgroup analyses were done to elucidate the effects of selenium on mortality. The details are as follows:

PN selenium monotherapy vs combined: Subgroup analyses showed that PN selenium monotherapy supplementation was associated with a trend in the reduction in mortality (RR= 0.92, 95% CI 0.81, 1.04, P= 0.19; figure 3). PN antioxidants cocktails with selenium had no

March 2021

effect on mortality (RR= 1.08, 95% CI 0.92, 1.25, P= 0.35; figure 3). There was a trend towards a difference in subgroups (P= 0.12; figure 3).

Note that in this subgroup analysis, only the monotherapy selenium group from Berger 2001 was included, not the combined selenium

group.

PN selenium loading dose vs no loading dose: Subgroup analyses showed that a PN loading dose had no effect on mortality (RR= 0.90,

95% CI 0.75, 1.08, P= 0.27; test for heterogeneity I² =18%; figure 4). The same was seen when the studies that did not have a loading dose

were aggregated (RR= 1.01, 95% CI 0.89, 1.08, P= 0.88; figure 4). The test for subgroup differences was not statistically significant (P=0.31;

figure 4).

PN selenium high dose vs low dose: Subgroup analyses showed that high daily dose of PN Selenium >500µg (RR= 0.97, 95% CI 0.86,

1.11, P= 0.69; figure 5), doses =500µg (RR= 0.87, 95% CI 0.57, 1.32, P= 0.50; figure 5) and low doses <500µg (RR 0.93, 95% CI 0.66, 1.30,

P= 0.67; figure 5) had no effects on mortality. The test for subgroup differences was not significant (P= 0.31; figure 5).

Infections: A total of 15 studies reported on infections. Berger 1998, Berger 2007, Mishra 2007 and Woth 2014 did not report on the number of

patients with infections, while Forceville 2007 reported on a subgroup of infections. Hence, only the data from 9 studies were included in the meta-

analysis, and when aggregated, selenium supplementation was associated with a trend towards a reduction in infectious complications (RR 0.95, 95

% CI 0.88, 1.02, p = 0.16, test for heterogeneity $I^2=0\%$, figure 6).

Subgroup analyses: Several subgroup analyses were done to elucidate the effects of selenium on infections. The details are as follows:

2

Critical Care Nutrition: Systematic Reviews March 2021

PN selenium monotherapy vs combined: Subgroup analyses showed that selenium monotherapy was not associated with a reduction in infectious complications (RR= 0.96, 95% CI 0.82, 1.09, P= 0.46; figure 7), but selenium in combined therapy was associated with a trend towards reduction in infectious complications (RR 0.90, 95% CI 0.77, 1.05, P= 0.16; figure 7); test for subgroup differences was not significant (P=0.59; figure 7). Note that in this subgroup analysis, only the monotherapy selenium group from Berger 2001 was included, not the combined selenium group.

PN selenium loading dose vs no loading dose: Subgroup analyses showed that a PN loading dose showed no effect in infectious complications (RR= 0.99, 95% CI 0.90, 1.09, P=0.84; figure 8). Meanwhile, PN selenium without a loading dose showed a significant reduction on infections (RR 0.87, 95% CI 0.77, 0.99, P=0.04; figure 8); there was a trend towards subgroup differences (P=0.12; figure 8).

PN selenium high dose vs low dose: Subgroup analyses showed that PN doses >500μg/d had no effect on infections (RR= 0.97, 95% CI 0.89, 1.05, P= 0.46; figure 9). Doses =500μg/d also showed no effect on infections (RR= 0.91, 95% CI 0.67, 1.22, P=0.51; figure 9). Whereas, doses <500μg/d showed a trend towards a reduction in infections (RR= 0.86, 95% CI 0.71, 1.04, P= 0.13; figure 9). The test for subgroup differences was not significant (P= 0.53; figure 9).

Ventilator Associated Pneumonia (VAP): When the 4 studies were aggregated, selenium supplementation (alone or in combination), was associated with a significant reduction in the occurrence of VAP (RR 0.69, 95% CI 0.55, 0.86, p=0.0008; figure 10).

LOS and Ventilator days: Eleven studies reported ICU LOS as a mean ± standard deviation but there were no significant differences between the groups when the data were aggregated (WMD 0.27. 95% CI -1.01, 1.55, p = 0.68, heterogeneity I²=10%) (see figure 11). When the 7 studies that reported hospital LOS as a mean ± standard deviation were aggregated, there were no significant differences between the groups (WMD -0.80, 95).

% CI -3.66, 2.05, p = 0.58, heterogeneity I²=0%) (figure 12). The Bloos study did not report on LOS in mean and standard deviation but found a trend towards a reduction in ICU LOS (p=0.08) and a significant reduction in hospital LOS (p=0.015) in the group supplemented with selenium. When the 7 studies that reported ventilator days as mean + standard deviation were aggregated, there was a trend in the reduction of ventilator days in the selenium group (WMD -2.14, 95% CI -4.94, 0.66, p=0.13, heterogeneity I²=76%; figure 13).

Quality of Life (QOL) Outcomes: Berger 2008 and Andrews 2011 reported on QOL outcomes. Berger 2008 conducted the SF-36 questionnaire at 3 months and found a trend towards improved physical activity score in the selenium group. There was no difference between the groups for physical limitation, physical pain and perceived health scores (Table 2). Andrews 2011 completed the SF-12 physical and mental composite scale score and the EQ-5D instrument at 3 and 6 months with survivors and found no significant difference between groups (Table 2).

Conclusions:

- 1) IV/parenteral selenium supplementation (alone or in combination with other antioxidants) has no effect on mortality in critically ill patients
- 2) IV/parenteral selenium supplementation (alone or in combination with other antioxidants) may be associated with a reduction in infectious complications in the critically ill but if real, the treatment effect is likely small.
- 3) IV/parenteral selenium supplementation (alone or in combination with other antioxidants) has no effect on ICU length of stay or hospital length of stay
- IV/parenteral selenium supplementation (alone or in combination with other antioxidants) may be associated with a reduction in ventilator days.
- 5) IV/parenteral selenium supplementation (alone or in combination with other antioxidants) has no effect on the QOL of critically ill patients.

Level 1 study: if all of the following are fulfilled: concealed randomization, blinded outcome adjudication and an intention to treat analysis. **Level 2 study:** If any one of the above characteristics are unfulfilled.

Table 1. Randomized Studies Evaluating Selenium Supplementation In Critically III Patients

Study	Population	Methods score	Intervention				
1) Kuklinski 1991	Patients with acute pancreatic necrosis N=17	C. Random: not sure ITT: no Blinding: no (4)	PN + selenium supplementation (500 μg /d) vs. PN without selenium supplementation				
2) Zimmerman 1997	Zimmerman 1997 Patients with SIRS and sepsis, APACHE > 15 and multiorgan failure score >6 N=40		IV Selenium as sodium selenite 1000 μg as a bolus and then 1000μg sodium selenite 24 hrs as a continuous infusion over 28 days vs. standard				
3) Berger 1998	Bums > 30 % TBSA N=20	C. Random: yes ITT: yes Blinding: double blind (12)	IV Copper (40.4 μmol), selenium (159 μg), zinc (406 μmol) + standard trace elements vs. standard trace elements (Copper 20 μmol, selenium 32 μg, zinc 1 μmol) from day 0-8, all received early EN				
Patients with systematic inflammatory response syndrome and sepsis from 11 ICUs N=42		C. Random: not sure ITT: yes Blinding: no (10)	PN with high dose selenium (535 μ g x 3 days, 285 μ g x 3 days and 155 μ g x 3 days and 35 μ g thereafter) vs. low dose selenium (35 μ g/day for duration of study				
5) Porter 1999	Our in HOUR Provider for transport		$50~\mu g$ selenium IV q 6 hrs + 400 IU Vit E, 100 mg Vit. C q 8 hrs and 8 g of N-acetylcysteine (NAC) $$ q 6 hrs via nasogastric or oral route, from Day 0-7 vs. none				
6) Berger 2001	r 2001 Trauma patients, surgical ICU C. Rand N=32 ITT Blinding		IV Selenium supplementation (500 $\mu g/day$) vs. placebo (Selenium group randomized further to two groups: 500 μg Selenium alone vs. 500 μg Selenium + 150 mg α tocopherol + 13 mg zinc) given slowly for 1st 5 days after injury (All groups received EN)				
7) Lindner 2004 Patients with acute pancreatitis admitted to the ICU N=70		C. Random: not sure ITT: no Blinding: single	IV sodium selenite dose of 2000 μg on day 1, 1000 μg on days 2-5, and 300 μg from day 6 until discharge vs placebo (isotonic 0.9% IV NaCl solution).				

		(9)	
8) Angstwurm 2007	Septic patients, multicentre mixed ICUs N=249	C.Random: not sure ITT: no Blinding: double (8)	1000μg Selenium IV within 1 hr followed by 1000μg Selenium for 14 days vs. NaCl (0.9%) (all patients received EN or PN)
9) Berger 2007	Bums > 20 % TBSA N=21	C.Random: not sure ITT: yes Blinding: no (8)	IV 100 ml of Copper (59 μ mol) + Selenium (375 μ gm + zinc (574 μ mol) vs. NaCl (0.9%) from admission for 5-15 days. Both groups were on EN.
10) Forceville 2007	Septic shock patients from 7 ICUs N=60	C.Random: not sure ITT: no Blinding: double (8)	4000μg Selenium IV on day 1 followed by 1000μg Selenium for 9 days vs. NaCl (0.9%) (all patients received EN or PN)
11) Mishra 2007	Septic ICU patients N=40	C.Random: not sure ITT: yes Blinding: double (9)	474 μg Selenium IV x 3 days followed by 316 μg x 3 days, 158 μg x 3 days and 31.6 μg thereafter vs. 31.6 μg Selenium (all patients received EN or PN).
12) Berger 2008	Mixed ICU N=200	C.Random: not sure ITT: yes Blinding: no (10)	IV Selenium supplementation loading dose 540 µg/day + zinc (60 mg) + Vit C 2700 mg + Vit B 305 mg + Vit E enteral 600 mg + Vit E 12.8 mg IV for 2 days followed by half the dose of all vs. standard vitamins. (All groups received EN or PN)
13) El-Attar 2009	COPD patients N=80	C.Random: yes ITT: yes Blinding: yes (12)	IV selenium as sodium selenite 100 μ g/day, zinc 2 mg/day and manganese 0.4 mg/day vs. none. TE were administered during the period on mechanical ventilation
14) González 2009	Medical/surgical ICU pts N=68	C.Random: yes ITT: yes Blinding: double (7)	day 1 IV sodium selenite 1000 μg , day 2 sodium selenite 500 μg and thereafter 200 μg during seven additional days vs selenite 100 $\mu g/d$
15) Andrews 2011	Mixed ICU, multicentre N=502	C. Random: yes ITT: yes	500μg selenium supplemented PN (12.5g nitrogen, 2000kcal) vs. standard PN (12.5g nitrogen, 2000kcal) initiated after ICU admission (actual median 2.6 days) for

		Blinding: double blind (13)	7 days (actual duration, mean 4.1 days).
16) Manzanares 2011	Septic or trauma patients N=31	C. Random: not sure ITT: no (except mortality) Blinding: single blind (9)	IV Selenium supplementation loading dose 2000 μg (2 hours) on day 1 followed by 1600 μg /day for 10 days vs. NaCl as placebo
17) Valenta et al, 2011	Patients with sepsis or SIRS N=150	C. Random: not sure ITT: yes Blinding: no (8)	IV Selenium supplementation loading dose 1000 μg on day 1 followed by 500 μg /day for 5-14 days + <75 μg /day of Na-selenite added to PN. vs. NaCl + <75 μg /day of Na-selenite added to PN.
18) Heyland 2013	Multicenter mixed ICUs N=1218	C. Random: yes ITT: yes Blinding: double (12)	500 μg selenium via PN + 300 μg selenium, 20 mg zinc, 10 mg beta carotene, 500 mg vitamin E, 1500 mg vitamin C via EN vs. placebo via PN and EN
19) Woth 2014	Mixed ICU, severe septic pts w multi-organ failure N=40	C. Random: not sure ITT: yes Blinding: no (6)	1000-μg/30 minutes loading dose of Na selenite and 1000-μg/die treatment for a maximum of 14 days vs control group (not described).
20) Chelkeba 2015	Single centre ICU pts with sepsis or septic shock enrolled 6 hours after diagnosis. N=54	C. Random: yes ITT: yes Blinding: no (11)	IV loading dose of 2000 μg of sodium selenite in 100 mL of normal saline given over 1 hour within the first 6 hrs of diagnosis of sepsis followed by 1500 μg of sodium selenite in 250 mL given for 12 hrs continuously for 14 days vs standard nutrition therapy (included EN or PN as per hospital best practice)
21) Bloos 2016	Multicentre Mixed ICU pts with severe sepsis or septic shock in last 24 hrs. N=1180 C. Random: y ITT: yes Blinding: dou (12)		IV loading dose of 1000 μg sodium selenite followed by continuous IV of 1000 μg sodium selenite daily until ICU discharge or for 21 days, whichever comes first.vs. placebo (NaCl)
22) Freitas 2017	Single centre ICU patients with high CRP receiving PN as main nutrition source. N=20	C. Random: no ITT: no Blinding: double (5)	Standard PN supplemented with an additional 60 micrograms (0.75 micromol) of selenious acid vs standard PN.

D5W: dextrose 5% in water ICU: intensive care unit

COPD: chronic obstructive pulmonary disease ITT: intention to treat; IV: intravenous

C.Random: concealed randomization N: number of patients

EN: enteral nutrition PN: parenteral nutrition

SIRS: systemic inflammatory response syndrome

TBSA: total body surface area.

Table 1. Randomized Studies Evaluating Selenium Supplementation In Critically III Patients (continued)

Study	Morta	lity (%)	Infection	Infections (%)		days	Renal Parameters	
Study	Experimental	Control	Experimental	Control	Experimental	Control		
1) Kuklinski 1991	ICU 0/8 (0)	ICU 8/9 (89)	NR	NR	NR	NR	NR	
2) Zimmerman 1997	3/20 (15)	8/20 (40)	NR	NR	NR	NR	NR	
3) Berger 1998	1/10 (10)	0/10 (0)	1.9 ± 0.9 (1-4) per patient	3.1 ± 1.1 (2-5) per patient	ICU 30 ± 12 (10) Hospital 54 ± 27 (10)	ICU 39 ± 13 (10) Hospital 66 ± 31 (10)	Exp Control CRRT required 0 1 (13d duration)	
4) Angstwurm 1999	Hospital 7/21 (33)	Hospital 11/21 (52)	NR	NR	NR	NR	*Excluded pts with chronic renal failure Exp Control CVVHD, p=0.04 3/21 9/21 Median serum creatinine Day 0 were identical, afterwards lower in experimental group Day 3, p=0.034 Day 7, p=0.03 Day 14, p=0.057	
5) Porter 1999	0/9 (0)	0/9 (0)	5/9 (56)	8/9 (89)			Exp Control Renal organ dysfunction (s. creatinine >2 mg/dL or need for dialysis) 0/9 2/9	
6) Berger 2001	Selenium alone 2/9 (22) Selenium + zinc + α tocopherol 0/11 (0)	1/11 (9)	Selenium alone 5/9 (56) Selenium + zinc + α tocopherol 3/11 (27)	3/11 (27)	Selenium alone ICU	ICU 8.6 ± 8.1 (11) Hospital 64 ± 39 (11)	*Excluded pts with pre-existing renal failure Selenium Control Complications: renal failure 0/9 0/11 Ventilator Days 5.1 ± 3.7 (20) 4.2 ± 5.2 (11)	

					$60 \pm 48 \text{ (11)}$ Selenium groups combined ICU $6.1 \pm 3.9 \text{ (20)}$ Hospital $68 \pm 60 \text{ (20)}$		
7) Linder 2004	Not specified 5/32 (15.6)	Not specified 3/35 (8.6)	NA	NA	Hospital 24 (9-44)	Hospital 26 (11-46)	Exp Control Renal Insufficiency (s. creatinine > 150 µmol) 6/32 2/35
8) Angstwurm 2007	28 day 46/116 (40)	28 day 61/122 (50)	New infections (HAP) 10/116 (9)	New infections (HAP) 10/122 (8)	ICU 15.1 ± 10 (116)	ICU 12.7± 9 (122)	Rate of renal failure was not different between groups and not related to high selenium levels. The need for dialysis was not different between groups
9) Berger 2007	1/11 (9)	1/10 (10)	2.1 ± 1.0 per patient	$\begin{array}{c} 3.6 \ \pm \\ \text{per patient} \end{array}$	ICU 35 ± 27 (11)	ICU 47 ± 37 (10)	*excluded severe renal failure (creatinine clearance <60 mL/min on admission)
10) Forceville 2007	28 day 14/31 (45) 6 Month 18/31 (59) 1 year 66%	28 day 13/29 (45) 6 Month 20/29 (68) 1 year 71%	Superinfection**** 1/31 (3)	Superinfection**** 2/29(7)	ICU 21 (7-40) Hospital 25 (7-68)	ICU 18 (10-31) Hospital 33 (11-51)	*excluded end phase chronic disease – unclear if this includes CKD Exp Control SAE – renal failure, p=0.483 0/31 1/29 (3%) Dialysis free days, p=0.303 37±55 26±49

							*excluded chronic renal failure pts
11) Mishra 2007	ICU 8/18 (44) Hospital 11/18 (61) 28 day 8/18 (44)	ICU 11/22 (61) Hospital 15/22 (68) 28 day 11/22 (50)	1.5 ± 1.9 per patient	1.8 ± 1.6 per patient	ICU 21.3 ± 16.2 (18)	ICU 20.8 ± 21.8 (18)	Exp Control CRRT, p=0.99 5/18 7/22 RRT free days, p=0.2 83.8% 88.1% No significant change in eGFR by day 14 in either group or any significant difference in eGFR between the two groups (table 3). No significant difference in plasma creatinine (table 3) Dialysis, day 0 11% 22% Dialysis, day 3 25% 28% Dialysis, day 3 25% 28% Dialysis, day 7 0% 19% Dialysis, day 14 9% 26%
12) Berger 2008	ICU 8/102 (8) Hospital 14/102 (14) 3 month 14/102 (14)	ICU 5/98 (5) Hospital 9/98 (11) 3 month 11/98 (11)	36/102 (35)	34/98 (35)	ICU $5.8 \pm 5.4 \text{ (102)}$ Hospital $23 \pm 20 \text{ (102)}$	ICU $5.4 \pm 5.7 \ (98)$ Hospital $26 \pm 20 \ (98)$	Exp Control
13) El-Attar 2009	ICU 2/40 (5.6)	ICU 1/40 (2.9)	VAP 5/36 (14)	VAP 7/34 (21)	NR	NR	*to eliminate confounding variables, patients with concomitant renal disease were excluded
14) González 2009	Hospital 6/34 (18)	Hospital 8/34 (24)	NR	NR	Hospital 12(12-14)	Hospital 17(14-20)	NR
15) Andrews 2011	ICU 84/251 (33) 6-month 107/251 (43)	ICU 84/251 (33) 6-month 114/251 (45)	Confirmed 104/251 (41)	Confirmed 121/251 (48)	ICU 13.2 (IQR 7.8- 23.7) Hospital 29.8 (IQR 14.7- 52.4)	ICU 15.1 (IQR 8.3-28.4) Hospital 31.2 (IQR 15.1- 57.8)	*excluded pts with estimated glomerular filtration rate <10 ml/min and not receiving renal replacement therapy

16) Manzanares 2011	ICU 3/15 (20) Hospital 5/15 (33)	ICU 5/16 (31) Hospital 7/16 (44)	VAP 3/15 (20)	VAP 7/16 (44)	ICU 14 ± 11 (15)	ICU 13 ± 6 (16)	*excluded chronic renal failure pts
17) Valenta 2011	28-day 19/75 (25)	28-day 24/75 (32)	NR	NR	NR	NR	NR
18) Heyland 2013	Hospital 216/617 (35) 14-day 154/617 (25) 28-day 190/617 (31) 3-month 239 6-month 250	Hospital 199/601 (33) 14-day 132/601 (22) 28-day 173/601 (29) 3-month 222 6-month 235	All 168/617 (27) VAP 71/617 (12)	All 181/601 (30) VAP 95/601 (16)	ICU 14.2 ± 22.7 (617) Hospital 31.2 ± 50.2 (617)	ICU 13.8 ± 23.1 (601) Hospital 29.5 ± 44.8 (601)	NR
19) Woth 2014	In 14 day study period 9/21 (43)	In 14 day study period 11/19 (58)	Gram negative 8/21 (38) Gram positive 3/21 (14) Fungal 1/21 (5)	Gram negative 3/19 (16) Gram positive 2/19 (11) Fungal 0/19 (0)	NR	NR	NR
20) Chelkeba 2015	28 day 9/29 (31)	28 day 10/25 (40)	VAP 16/29(55.2) Early VAP 15/29 (51.7) Late VAP 5/29 (17.2)	VAP 21/25 (84%) Early VAP 15/25 (60%) Late VAP 11/25 (44%)	ICU 19.7 ± 11 (29) Hospital 25.2 ± 10 (29)	ICU 23.8 ± 13 (25) Hospital 24.5 ± 9 (25)	NR

Critical Care Nutrition: Systematic Reviews March 2021

21) Bloos 2016	28 day 152/543 (28) 90 day 198/543 (38)	28 day 137/546 (25) 90 day 201/546 (38)	Secondary infections, Day 14 243/543 (44.7%) Secondary infections, Day 21 319/543 (58.8%)	Secondary infections, Day 14 269/546 (49.3%) Secondary infections, Day 21 323/546 (59.2%)	ICU 11 (5-22) Hospital 26 (16-42)	ICU 12 (6-24) Hospital 29 (17-50)	No renal dysfunction (n=497) OR 1.3 (0.8; 2.1), p=0.337 Subgroup: AND no post-baseline dialysis (n=427) OR 1.3 (0.7; 2.1), p=0.463 Subgroup: AND post-baseline dialysis (n=67) OR 1.3 (0.4; 3.9), p=0.652 Renal dysfunction (n=458) OR 1.0 (0.7; 1.5), p=0.925 Subgroup: AND no post-baseline dialysis (n=212) OR 1.2 (0.6; 2.3), p=0.584 Subgroup: AND post-baseline dialysis (n=235) OR 0.9 (0.5; 1.5), p=0.562 RRT Free days Exp/PCT Exp/NoPCT ctrl/PCT ctrl/NoPCT 8(3-17) 8(3-17) 7(3-18) 7(3-16)
22) Freitas 2017	14 day 1/8	14 day 3/12	NR	NR	NR	NR	NR

COPD: chronic obstructive pulmonary disease

HAP: hospital acquired pneumonia NR: non reported

SIRS: systemic inflammatory response syndrome

C.Random: concealed randomization

ICU: intensive care unit PN: parenteral nutrition

TBSA: total body surface area

EN: enteral nutrition ITT: intent to treat

Hosp: hospital

VAP: ventilator associated pneumonia

NA: non attribuible IV: intravenous

12

Table 2. Quality of Life (QOL) Outcomes

Study	QOL Outcomes											
12) Berger 2008	AOX Control											
12) Derger 2000	Short Form (SF) 36-item health survey Physical Activity Score 24.2 ± 4.9 22.8 ± 5.7, p=0.14 Physical Limitation											
	5.8 <u>+</u> 1.4 5.5 <u>+</u> 1.5, p=NS											
	Physical Pain											
	8.9 <u>+</u> 2.4 9.0 <u>_</u> 2.7, p=NS											
	Perceived Health											
		18.9 <u>+</u> 4.5	19.2 <u>+</u> 4.1, p=NS									
15) Andrews 2011	Gln	GIn+Se	Se	Neither								
,	SF-12 PCS at 3 months											
	35.2 <u>+</u> 9.8 (49)		33.9 <u>+</u> 9.8 (52)	36.6 <u>+</u> 11.6 (59)								
	05.0 0.0 (45)		S at 6 months	00.0 40.5 (50)								
	35.9 <u>+</u> 9.3 (45)		36.3 <u>+</u> 10.0 (46)	39.9 <u>+</u> 10.5 (53)								
	420 - 11 9 (40)		S at 3 months	40.0 . 10.0 (50)								
	420 <u>+</u> 11.8 (49)		41.9 <u>+</u> 11.9 (52) S at 6 months	42.2 <u>+</u> 12.2 (59)								
	43.4 + 11.9 (45)		44.1 + 11.6 (46)	43.3 + 12.1 (53)								
	45.4 <u>+</u> 11.9 (45)	_ \ /	at 3 months	43.3 <u>+</u> 12.1 (33)								
	0.47 + 0.41 (52)		0.49 <u>+</u> 0.35 (55)	0.56 + 0.34 (61								
	5.17 <u>·</u> 0.41 (02)	0.00 <u>-</u> 0.07 (01										
		EQ-5D :	at 6 months									

NS: not significant

Figure 1. Mortality (including Kuklinski)

	Seleni	um	Conti	rol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Kuklinski	0	8	8	9	0.1%	0.07 [0.00, 0.98]	1991	
Zimmerman	3	20	8	20	0.6%	0.38 [0.12, 1.21]	1997	
Berger 1998	1	10	0	10	0.1%	3.00 [0.14, 65.90]	1998	
Angstwurm 1999	7	21	11	21	1.6%	0.64 [0.31, 1.32]	1999	
Porter	0	9	0	9		Not estimable	1999	
Berger 2001	2	20	1	11	0.2%	1.10 [0.11, 10.81]	2001	-
Forceville	14	31	13	29	2.7%	1.01 [0.58, 1.76]	2007	+
Mishra	11	18	15	22	3.9%	0.90 [0.56, 1.43]	2007	
Berger 2007	1	11	1	10	0.1%	0.91 [0.07, 12.69]	2007	
Angstwurm 2007	46	116	61	122	10.3%	0.79 [0.60, 1.06]	2007	
Berger 2008	14	102	9	98	1.4%	1.49 [0.68, 3.29]	2008	+
Montoya	6	34	8	34	0.9%	0.75 [0.29, 1.93]	2009	
El-Attar	2	40	1	40	0.2%	2.00 [0.19, 21.18]	2009	- ·
Manzanares	3	15	5	16	0.5%	0.64 [0.18, 2.22]	2011	
Valenta	19	75	24	75	3.3%	0.79 [0.48, 1.32]	2011	
Andrews	84	251	84	251	13.9%	1.00 [0.78, 1.28]	2011	+
Heyland	216	617	199	601	34.6%	1.06 [0.90, 1.24]	2013	+
Woth	9	21	11	19	2.2%	0.74 [0.40, 1.38]	2014	
Chelkeba	9	29	10	25	1.6%	0.78 [0.38, 1.60]	2015	
Bloos	152	543	137	546	21.6%	1.12 [0.92, 1.36]	2016	+
Freitas	1	8	3	12	0.2%	0.50 [0.06, 4.00]	2017	
Total (95% CI)		1999		1980	100.0%	0.98 [0.90, 1.08]		•
Total events	600		609					
Heterogeneity: Tau ² =	0.00; Ch	i² = 17.:	56, df = 1	9 (P = 0)	0.55); I ² =	0%		
Test for overall effect:				•				0.01 0.1 1 10 100 Favours experimental Favours control

Figure 2. Mortality (excluding Kuklinski)

J	Seleni	um	Contr	rol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Zimmerman	3	20	8	20	0.6%	0.38 [0.12, 1.21]	1997	•
Berger 1998	1	10	0	10	0.1%	3.00 [0.14, 65.90]	1998	
Angstwurm 1999	7	21	11	21	1.6%	0.64 [0.31, 1.32]	1999	
Porter	0	9	0	9		Not estimable	1999	
Berger 2001	2	20	1	11	0.2%	1.10 [0.11, 10.81]	2001	
Mishra	11	18	15	22	3.9%	0.90 [0.56, 1.43]	2007	
Angstwurm 2007	46	116	61	122	10.4%	0.79 [0.60, 1.06]	2007	
Berger 2007	1	11	1	10	0.1%	0.91 [0.07, 12.69]	2007	← →
Forceville	14	31	13	29	2.7%	1.01 [0.58, 1.76]	2007	
Berger 2008	14	102	9	98	1.4%	1.49 [0.68, 3.29]	2008	
El-Attar	2	40	1	40	0.2%	2.00 [0.19, 21.18]	2009	
Montoya	6	34	8	34	0.9%	0.75 [0.29, 1.93]	2009	-
Andrews	84	251	84	251	13.9%	1.00 [0.78, 1.28]	2011	+
Manzanares	3	15	5	16	0.5%	0.64 [0.18, 2.22]	2011	
Valenta	19	75	24	75	3.3%	0.79 [0.48, 1.32]	2011	
Heyland	216	617	199	601	34.6%	1.06 [0.90, 1.24]	2013	<u></u>
Woth	9	21	11	19	2.2%	0.74 [0.40, 1.38]	2014	
Chelkeba	9	29	10	25	1.6%	0.78 [0.38, 1.60]	2015	
Bloos	152	543	137	546	21.6%	1.12 [0.92, 1.36]	2016	 -
Freitas	1	8	3	12	0.2%	0.50 [0.06, 4.00]	2017	
Total (95% CI)		1991		1971	100.0%	0.98 [0.90, 1.08]		•
Total events	600		601]
Heterogeneity: Tau ² =		i²= 13 3		8 (P = 1	0.75): 3=	0%		
Test for overall effect:				- 1, - 1	// -	• • •		0.1 0.2 0.5 1 2 5 10
. 551 101 5751411 611661.	0.00 (. = 0.1	'/					Favours selenium Favours control

Figure 3 SUBGROUP ANALYSES: MORTALITY: PN selenium monotherapy vs combined

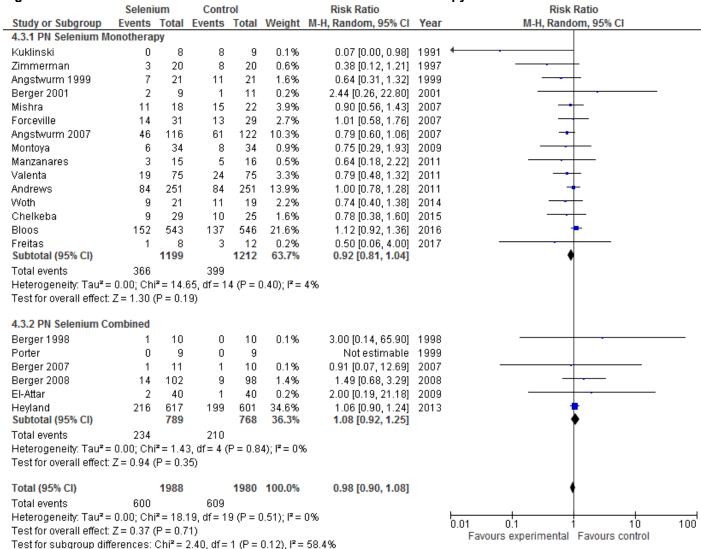


Figure 4 SUBGROUP ANALYSES: MORTALITY: PN Selenium loading dose vs no loading dose:

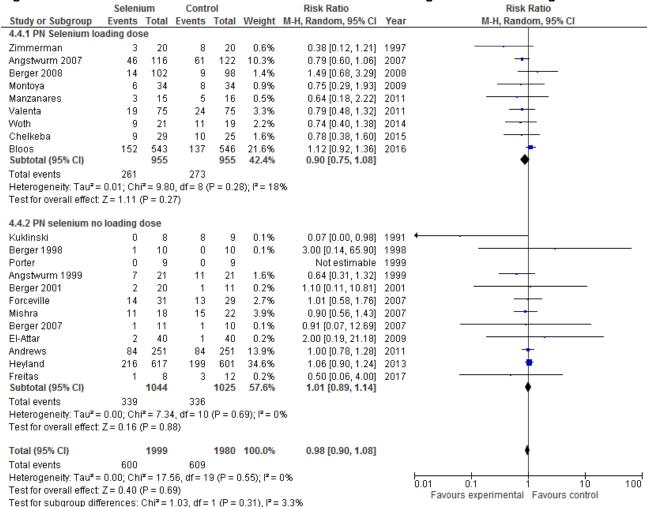


Figure 5. SUBGROUP ANALYSES: MORTALITY: PN Selenium high dose vs low dose

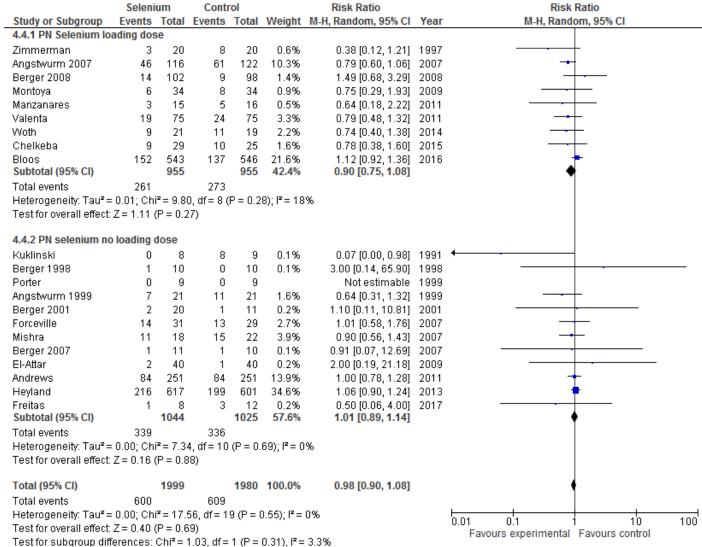


Figure 6. Infections

J	Seleni	ium	Conti	rol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Porter	5	9	8	9	1.5%	0.63 [0.33, 1.17]	1999	
Berger 2001	8	20	3	11	0.5%	1.47 [0.49, 4.42]	2001	
Angstwurm 2007	10	116	10	122	0.8%	1.05 [0.45, 2.43]	2007	
Berger 2008	36	102	34	98	4.0%	1.02 [0.70, 1.48]	2008	
El-Attar	5	36	7	34	0.5%	0.67 [0.24, 1.92]	2009	
Andrews	104	251	121	251	15.2%	0.86 [0.71, 1.04]	2011	
Manzanares	3	15	7	16	0.4%	0.46 [0.14, 1.45]	2011	
Heyland	168	617	181	601	18.3%	0.90 [0.76, 1.08]	2013	
Bloos	319	543	323	546	58.7%	0.99 [0.90, 1.10]	2016	*
Total (95% CI)		1709		1688	100.0%	0.95 [0.88, 1.02]		•
Total events	658		694					
Heterogeneity: Tau² =	0.00; Ch	$i^2 = 6.5$	5, df = 8 (P = 0.5	9); I² = 0%	6	F	11 02 05 1 2 5 10
Test for overall effect:	Z=1.42	(P = 0.1)	6)				U	0.1 0.2 0.5 1 2 5 10 Favours selenium Favours control

Figure 7 SUBGROUP ANALYSES: INFECTIONS: PN selenium monotherapy vs combined

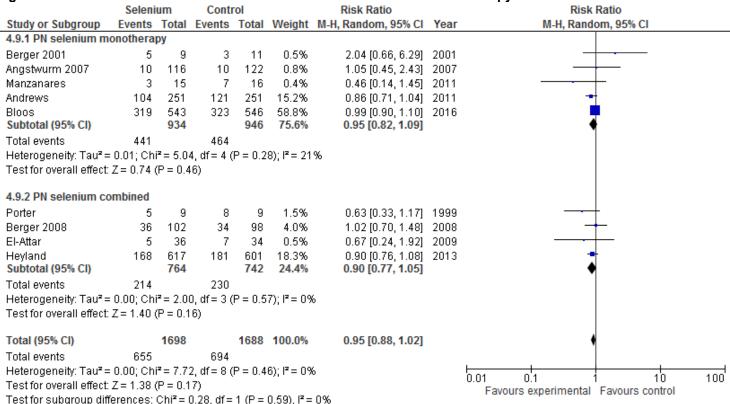


Figure 8 SUBGROUP ANALYSES: INFECTIONS PN Selenium loading dose vs no loading dose

	Seleni	ium	Conti	rol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
4.10.1 PN selenium l	loading do	ose						
Angstwurm 2007	10	116	10	122	0.8%	1.05 [0.45, 2.43]	2007	
Berger 2008	36	102	34	98	4.0%	1.02 [0.70, 1.48]	2008	+
Manzanares	3	15	7	16	0.4%	0.46 [0.14, 1.45]	2011	
Bloos Subtotal (95% CI)	319	543 776	323	546 782	58.7% 64.0 %	0.99 [0.90, 1.10] 0.99 [0.90, 1.09]	2016	₹
Total events	368		374					
Heterogeneity: Tau² =	= 0.00; Ch	$i^2 = 1.7$	7, df = 3 (P = 0.6	2); $I^2 = 0\%$	6		
Test for overall effect:	Z = 0.21	(P = 0.8)	84)					
4.10.2 PN selenium r	no loading	dose						
Porter	5	9	8	9	1.5%	0.63 [0.33, 1.17]	1999	
Berger 2001	8	20	3	11	0.5%	1.47 [0.49, 4.42]	2001	- •
El-Attar	5	36	7	34	0.5%	0.67 [0.24, 1.92]	2009	
Andrews	104	251	121	251	15.2%	0.86 [0.71, 1.04]	2011	
Heyland	168	617	181	601	18.3%	0.90 [0.76, 1.08]	2013	
Subtotal (95% CI)		933		906	36.0%	0.87 [0.77, 0.99]		•
Fotal events	290		320					
Heterogeneity: Tau² =	= 0.00; Ch	$i^2 = 2.3i$	6, df = 4 (P = 0.6	7); I² = 0%	6		
Test for overall effect:	Z= 2.09	(P = 0.0)	14)					
Total (95% CI)		1709		1688	100.0%	0.95 [0.88, 1.02]		•
Total events	658		694					
Heterogeneity: Tau² = Fest for overall effect:				P = 0.5	9); I² = 0%	6		0.01 0.1 1 10 1 Favours experimental Favours control
Test for subgroup dif	ferences:	Chi²=	2.40, df=	1 (P=	0.12), l²=	58.3%		

Figure 9 SUBGROUP ANALYSES: INFECTIONS PN Selenium high dose vs low dose

	Seleni	ium	Cont	rol		Risk Ratio		Risk Ratio
tudy or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
.11.1 PN selenium l	high dose							
Ingstwurm 2007	10	116	10	122	0.8%	1.05 [0.45, 2.43]	2007	
lanzanares	3	15	7	16	0.4%	0.46 [0.14, 1.45]	2011	
leyland	168	617	181	601	18.3%	0.90 [0.76, 1.08]	2013	
lloos	319		323	546	58.7%	0.99 [0.90, 1.10]	2016	•
Subtotal (95% CI)		1291		1285	78.3%	0.97 [0.89, 1.05]		•
otal events	500		521					
leterogeneity: Tau² =	= 0.00; Ch	$i^2 = 2.51$	6, df = 3 (P = 0.4	6); $I^2 = 0\%$			
est for overall effect	Z = 0.74	(P = 0.4)	16)					
.11.2 PN selenium	dose =500) micro	grams					
Porter	5	9	8	9	1.5%	0.63 [0.33, 1.17]	1999	
erger 2001	8	20	3	11	0.5%	1.47 [0.49, 4.42]	2001	- ·
erger 2008	36	102	34	98	4.0%	1.02 [0.70, 1.48]	2008	+
I-Attar	5	36	7	34	0.5%	0.67 [0.24, 1.92]	2009	
Subtotal (95% CI)		167		152	6.5%	0.91 [0.67, 1.22]		•
otal events	54		52					
leterogeneity: Tau² =				P = 0.4	2); $I^2 = 0\%$			
Fest for overall effect	: Z= 0.65	(P = 0.5)	01)					
.11.3 PN selenium l	ow dose							
Andrews	104	251	121	251	15.2%	0.86 [0.71, 1.04]	2011	-
Subtotal (95% CI)		251		251	15.2%	0.86 [0.71, 1.04]		•
otal events	104		121					
Heterogeneity: Not ap								
est for overall effect	: Z= 1.52	(P = 0.1	3)					
otal (95% CI)		1709		1688	100.0%	0.95 [0.88, 1.02]		•
otal events	658		694					
leterogeneity: Tau² =	= 0.00; Ch	$i^2 = 6.5$	5, df = 8 (P = 0.5	9); I² = 0%			0.01 0.1 1 10 1
est for overall effect	Z=1.42	(P = 0.1)	6)					0.01 0.1 1 10 1 Favours experimental Favours control
est for subgroup dif	ferences:	Chi²=	1.28. df=	2 (P =	0.53), $I^2 = I$	0%		i avours experimental Tavours control

Figure 10. Ventilator Associated Pneumonia

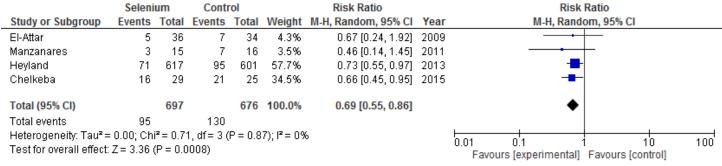


Figure 11. ICU LOS

		Selenium		С	ontrol			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	r IV, Random, 95% CI
Berger 1998	30	12	10	39	13	10	1.3%	-9.00 [-19.97, 1.97]	1998	3 ←
Porter	22	25.2	9	35.8	21.9	9	0.3%	-13.80 [-35.61, 8.01]	1999	9 ←
Berger 2001	6.1	3.9	20	8.6	8.1	11	5.9%	-2.50 [-7.58, 2.58]	2001	1
Angstwurm 2007	15.1	10	116	12.7	9	122	21.4%	2.40 [-0.02, 4.82]	2007	7
Mishra	21.3	16.2	18	20.8	21.8	22	1.2%	0.50 [-11.29, 12.29]	2007	7 ← →
Berger 2007	35	27	11	47	37	10	0.2%	-12.00 [-39.94, 15.94]	2007	7 ←
Berger 2008	5.8	5.4	102	5.4	5.7	98	39.3%	0.40 [-1.14, 1.94]	2008	3 —
Manzanares	14	11	15	13	6	16	4.0%	1.00 [-5.30, 7.30]	2011	1 -
Heyland	14.2	22.7	617	13.8	23.1	601	19.5%	0.40 [-2.17, 2.97]	2013	3
Woth	11.9	12.83047	20	12.77778	9.77124	18	3.1%	-0.88 [-8.09, 6.33]	2014	4 ———
Chelkeba	19.7	11	29	23.8	13	25	3.8%	-4.10 [-10.58, 2.38]	2015	5 +
Total (95% CI)			967			942	100.0%	0.27 [-1.01, 1.55]		•
Heterogeneity: Tau ² =	0.47; C	hi² = 11.09,	df= 10	(P = 0.35);	I²=10%					
Test for overall effect:				,,						-10 -5 0 5 10 Favours selenium Favours control

23

Figure 12. Hospital LOS

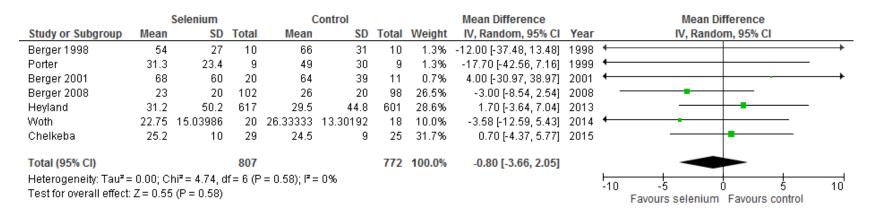
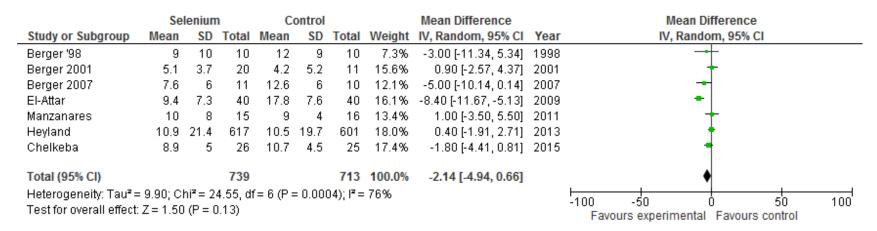



Figure 13. Ventilator Days

Critical Care Nutrition: Systematic Reviews March 2021

References:

Included Articles

- 1. Kuklinski B, Buchner M, Schweder R, Nagel R (1991) Akute Pancreatitis-eine "Free Radical Disease:. Letalitatssenkung durch Natriumselenit (Na2SeO3)-Therapie. Z. gestame Inn Med 46:S145-149
- 2. Zimmermann T, Albrecht S, Kühne H, Vogelsang U, Grützmann R, Kopprasch S (1997) Selensubstitution bei Sepsispatienten, Med Klin 92 (Suppl III):3-4
- 3. Berger MM, Spertini F, Shenkin A, Wardle C, Wiesner L, Schindler C, Chioléro RL (1998) Trace element supplementation modulates pulmonary infection rates after major burns: a double-blind, placebo-controlled trial. Am J Clin Nutr 68:365-371
- 4. Angstwurm MW, Schottdorf J, Schopohl J, Gaertner R (1999) Selenium replacement in patients with severe systemic inflammatory response syndrome improves clinical outcome. Crit Care Med 27:1807-1813
- 5. Porter JM, Ivatury RR, Azimuddin K, Swami R (1999) Antioxidant therapy in the prevention of organ dysfunction syndrome and infectious complications after trauma: early results of a prospective randomized study. Am Surg 65:478-483
- 6. Berger MM, Recmond MJ, Shenkin A, Rey F, Wardle C, Cayeux C, Schindler C, Chiolero (2001) Influence of selenium supplements on the post-traumatic alterations of the thyroid axis: a placebo-controlled trial. Intensive Care Med 27:91-100
- 7. Lindner D, Lindner J, Baumann G, Dawczynski H, Bauch K. [Investigation of antioxidant therapy with sodium selenite in acute pancreatitis. A prospective randomized blind trial]. Med Klin (Munich). 2004 Dec 15;99(12):708-12. German. PubMed PMID: 15599680.
- 8. Angstwurm MW, Engelmann L, Zimmermann T, Lehmann C et al. Selenium in Intensive Care (SIC): results of a prospective randomized, placebo-controlled, multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis, and septic shock. Crit Care Med. 2007;35(1):118-26.
- Berger MM, Baines M, Raffoul W, Benathan M, Chiolero RL, Reeves C, Revelly JP, Cayeux MC, Sénéchaud I, Shenkin A. Trace element supplementation after major burns modulates antioxidant status and clinical course by way of increased tissue trace element concentrations. Am J Clin Nutr. 2007 May;85(5):1293-300.
- 10. Forceville X, Laviolle B, Annane D, Vitoux D, Bleichner G, Korach JM, Cantais E, Georges H, Soubirou JL, Combes A, Bellissant E. Effects of high doses of selenium, as sodium selenite, in septic shock: a placebo-controlled, randomized, double-blind, phase II study. Crit Care. 2007;11(4):R73.
- 11. Mishra V, Baines M, Perry SE, McLaughlin PJ, Carson J, Wenstone R, Shenkin A. Effect of selenium supplementation on biochemical markers and outcome in critically ill patients. Clin Nutr. 2007 Feb;26(1):41-50.
- 12. Berger MM, Soguel L, Shenkin A, Revelly JP, Pinget C, Baines M, Chioléro RL. Influence of early antioxidant supplements on clinical evolution and organ function in critically ill cardiac surgery, major trauma, and subarachnoid hemorrhage patients. Crit Care. 2008;12(4):R101

- 13. El-Attar M, Said M, El-Assal G, Sabry NA, Omar E, Ashour L. Serum trace element levels in COPD patient: the relation between trace element supplementation and period of mechanical ventilation in a randomized controlled trial. Respirology. 2009 Nov;14(8):1180-7. Epub 2009 Sep 16. PubMed PMID: 19761535.
- 14. González CM*, Luna AH, Silva JAV, Guzmán CO, Sánchez JA, Granillo, JF. Efecto antiinflamatorio del selenio en pacientes sépticos Revista de la asociacion de medicina critica. Y Terapia Intensive. 2009;23(4):199-205
- 15. Andrews PJ, Avenell A, Noble DW, Campbell MK, Croal BL, Simpson WG, Vale LD, Battison CG, Jenkinson DJ, Cook JA; Scottish Intensive care Glutamine or selenium Evaluative Trial Trials Group. Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. BMJ. 2011 Mar 17;342:d1542
- 16. Manzanares W*, Biestro A, Torre MH, Galusso F, Facchin G, Hardy G. High-dose selenium reduces ventilator-associated pneumonia and illness severity in critically ill patients with systemic inflammation. Intensive care medicine. 2011;37(7):1120-7
- 17. Valenta J, Brodska H, Drabek T, Hendl J, Kazda A. High-dose selenium substitution in sepsis: a prospective randomized clinical trial. Intensive Care Med. 2011 May;37(5):808-15.
- 18. Heyland D, Muscedere J, Wischmeyer PE, Cook D, Jones G, Albert M, Elke G, Berger MM, Day AG for the Canadian Critical Care Trials Group. A Randomized Trial of Glutamine and Antioxidants in Critically III Patients. N Engl J Med 2013;368(16):1487-95.
- 19. Woth G, Nagy B, Mérei Á, Ernyey B, Vincze R, Kaurics Z, Lantos J, Bogár L, Mühl D. The effect of Na-selenite treatment on the oxidative stress-antioxidants balance of multiple organ failure. J Crit Care. 2014 Oct;29(5):883.e7-11.
- 20. In submission
- 21. Chelkeba L, Ahmadi A, Abdollahi M, Najafi A, Ghadimi MH, Mosaed R, Mojtahedzadeh M. The effect of parenteral selenium on outcomes of mechanically ventilated patients following sepsis: a prospective randomized clinical trial. Ann Intensive Care. 2015 Dec;5(1):29.
- 22. Freitas RGBON, Nogueira RJN, Cozzolino SMF, Vasques ACJ, Hessel G. Influence of selenium supplementation on patients with inflammation: A pilot double blind randomized study. Nutrition. 2017 Sep;41:32-36.

Excluded Articles

#	Reason excluded	Citation
1	Abstract only	Sawyer MA, Mike JJ, Chavin K, Marino PL (1989) Antioxidant therapy and survival in ARDS. Crit Care Med 17: S153 (abstract)
2	Not ICU patients	Uden S, Bilton D, Nathan L, Hunt LP, Mains C, Braganza JM (1990) Antioxidant therapy for recurrent pancreatitis: placebo-controlled trial. Aliment Pharmacol Therap 4: 357-371
3	Obs Study of Kuklinski 1991	Kuklinski B, Buchner M, Muller T, Schweder R (1992) [Anti-oxidative therapy of pancreatitisan 18-month interim evaluation] Z Gesamte Inn Med 47:239-245
4	Not ICU patients	Uden S, Schofield D, Miller PF, Day JP, Bottiglier T, Braganza JM. Antioxidant therapy for recurrent pancreatitis: biochemical profiles in a placebo-controlled trial. Aliment Pharmacol Ther. 1992 Apr;6(2):229-40.
5	No clinical outcomes	Lehmann C, Egerer K, Weber M, Krausch D, Wauer H, Newie T, Kox WJ (1997) Effect of selenium administration on various laboratory parameters of patients at risk for sepsis syndrome. Med Klin 15 (Suppl 3):14-16
6	Not ICU patients	Saito I, Asano T, Sano K, Takakura K, Abe H, Yoshimoto T, Kikuchi H, Ohta T, Ishibashi S (1998) Neuroprotective effect of an antioxidant, ebselen, in patients with delayed neurological deficits after aneurysmal subarachnoid hemorrhage. Neurosurgery 42:269-277
7	Not ICU patients	Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, Yasuhara H (1998) Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke 29:12-17
8	Not ICU patients	Heaney AP, Sharer N, Rameh B, Braganza JM, Durrington PN. Prevention of recurrent pancreatitis in familial lipoprotein lipase deficiency with high-dose antioxidant therapy. J Clin Endocrinol Metab. 1999 Apr;84(4):1203-5.
9	Not ICU patients	Ogawa A, Yoshimoto T, Kikuchi H, Sano K, Saito I, Yamaguchi T, Yasuhara H. Ebselen in acute middle cerebral artery occlusion: a placebo-controlled, double-blind clinical trial. Cerebrovasc Dis. 1999 Mar-Apr;9(2):112-8.
10	Duplicate study of Angstwurm 1999	Angstwurm MW, Schopohl J, Gaertner R. Selenium substitution has no direct effect on thyroid hormone metabolism in critically ill patients. Eur J Endocrinol. 2004 Jul;151(1):47-54.
11	Systematic review	Heyland DK, Dhaliwal R, Suchner U, Berger MM. Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intensive Care Med. 2005 Mar;31(3):327-37.
12	Same as Berger AJCN 2007	Berger MM, Binnert C, Chiolero RL, Taylor W, Raffoul W, Cayeux MC, Benathan M, Shenkin A, Tappy L. Trace element supplementation after major burns increases burned skin trace element concentrations and modulates local protein metabolism but not whole-body substrate metabolism. Am J Clin Nutr. 2007 May;85(5):1301-6.
13	Not ICU patients, used NAC in combination	Siriwardena AK, Mason JM, Balachandra S, Bagul A, Galloway S, Formela L, Hardman JG, Jamdar S. Randomised, double blind, placebo controlled trial of intravenous antioxidant (n-acetylcysteine, selenium, vitamin C) therapy in severe acute pancreatitis. Gut. 2007 Oct;56(10):1439-44. Epub 2007 Mar 13. PubMed PMID: 17356040; PubMed Central PMCID: PMC2000286.
14	Elective surgery patients	van Stijn MF, Ligthart-Melis GC, Boelens PG, Scheffer PG, Teerlink T, Twisk JW, Houdijk AP, van Leeuwen PA. Antioxidant enriched enteral nutrition and oxidative stress after major gastrointestinal tract surgery. World J

		Gastroenterol. 2008 Dec 7;14(45):6960-9.
15	High dose Se vs low dose Se	Manzanares W, Biestro A, Galusso F, Torre MH, Mañáy N, Facchin G, Hardy G. High-dose selenium for critically ill patients with systemic inflammation: pharmacokinetics and pharmacodynamics of selenious acid: a pilot study. Nutrition. 2010 Jun;26(6):634-40.
16	High dose Se vs low dose Se	Manzanares W*, Biestro A, Torre MH, Galusso F, Facchin G, Hardy G. High-dose selenium reduces ventilator- associated pneumonia and illness severity in critically ill patients with systemic inflammation. Intensive care medicine. 2011;37(7):1120-7
17	Se was not given intravenously	Schneider A, Markowski A, Momma M, Seipt C, Luettig B, Hadem J, Wilhelmi M, Manns MP, Wedemeyer J. Tolerability and efficacy of a low-volume enteral supplement containing key nutrients in the critically ill. Clin Nutr. 2011 Oct;30(5):599-603.
18	Meta-analyses	Huang TS, Shyu YC, Chen HY, Lin LM, Lo CY, Yuan SS, Chen PJ. Effect of Parenteral Selenium Supplementation in Critically III Patients: A Systematic Review and Meta-Analysis. PLoS One. 2013;8(1):e54431. Epub 2013 Jan 25.
19	Not an RCT	Janka V, Ladislav K, Jozef F, Ladislav V. Restoration of antioxidant enzymes in the therapeutic use of selenium in septic patients. Wien Klin Wochenschr. 2013 May 4.